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Chapter 4
Phytochemicals for Preventing 
and Treating Chronic Diseases

Gerardo N. Guerrero-Flores, Belén Carlino, Rocío V. Gili, Sara Leeson, 
and Martin L. Mayta

Abstract  The rise of noncommunicable diseases (NCDs) as the leading threat to 
global health is clear, as these conditions cause nearly two-thirds of deaths world-
wide, mostly in low and middle-income countries. NCDs are chronic conditions 
that last 1 year or more and that requiere medical care and lifestyle changes. Diet is 
one factor contributing to NCDs. While diets high in fruits, vegetables, nuts, and 
whole grains protect against developing several NCDs, increased mortality has been 
associated with a high intake of fried food, red meat, and processed meats. 
Phytochemicals, plant-derived bioactive compounds, have gained attention for their 
potential to benefit health and prevent or treat NCDs. Interestingly, phytochemicals 
interact with the gut microbiota that colonizes the human digestive system, which 
plays a crucial role in maintaining health and preventing diseases like metabolic 
syndrome and associated risk factors like insulin resistance and hypertension. This 
chapter aims to provide a comprehensive understanding of the role of phytochemi-
cals in some chronic diseases and their prevention.
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4.1 � Introduction

Noncommunicable diseases (NCDs) have been defined as conditions that last 1 year 
or beyond, requiring constant medical care and changes in lifestyle activities, or 
both [1, 2]. With NCDs accounting for nearly two-thirds of deaths worldwide, 
mainly from low/middle-income countries [3], the emergence of chronic diseases as 
the predominant challenge to global health is undeniable [4]. One of the factors 
contributing to the development of chronic conditions is diet [5]. Previous studies 
have identified the relationship between diet and mortality. A plant-based diet exerts 
a protective effect against the development of several chronic diseases, such as 
hypertension [6, 7], metabolic syndrome [8], diabetes mellitus [9, 10], and ischemic 
heart disease (IHD) [11, 12], which might be expected to result in lower mortality 
[13]. Those foods found to correlate with reduced mortality include nuts [14, 15], 
fruit, vegetables [16], cereal fiber [17], polyunsaturated fatty acids (PUFAs) [18], 
and green salad [19]; while association with increase mortality have been found for 
meat, red meat, processed meat [20], eggs [21], and fried potatoes [22].

Phytochemicals are plant-derived bioactive compounds classified as primary and 
secondary metabolites, according to their function in plant metabolism [23]. Primary 
metabolites, such as carbohydrates, lipids, and proteins, are directly involved in 
plant growth and metabolisms [24], while secondary metabolites are further grouped 
into three main classes: alkaloids, glucosinolates, and cyanogenic glycosides; phe-
nolic compounds; and terpenes. These secondary metabolites in plants serve a vari-
ety of ecological and physiological functions. Phytochemicals have gained 
considerable attention for their potential to positively impact health and prevent or 
treat noncommunicable diseases like obesity, type 2 diabetes, cancer, and cardiovas-
cular disease [25, 26]. A growing body of evidence shows a significant correlation 
between phytochemicals intake levels and their positive effects on NCDs [27, 28] 
(Table  4.1). Phytochemicals are important bioactive compounds that can prevent 
cardiovascular diseases (CVDs) through several mechanisms. For example, many 
studies have thoroughly examined how flavonoids can interfere with lipid metabo-
lism, decrease platelet adhesion, and improve endothelial function [93–96]. 
Moreover, studies have shown that phytochemicals possess antidiabetic qualities, as 
they improve pancreatic function, glucose homeostasis, and insulin sensitivity [97]. 
Recent research has also uncovered phytochemicals’ anticancer properties, with 
compounds like sulforaphane in cruciferous vegetables and curcumin in turmeric 
demonstrating potent antiinflammatory and antioxidant effects that can modulate 
signaling pathways involved in cancer development [25, 98–100].

Additionally, an intriguing relationship exists between phytochemicals and the 
gut microbiota (the bacteria, archaea, and eukaryotes that colonize the human diges-
tive system). The gut microbiota impacts human health from innate immunity to 
appetite and energy metabolism [101, 102]. For example, phytochemicals influence 
microbiota composition in a way that hinders colorectal cancer development [103], 
and phytochemicals interaction with the microbiota may help prevent metabolic 
syndromes and its associated risk factors, like insulin resistance and hypertension, 
which heighten cardiovascular disease and diabetes risk [104]. The complex 
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Table 4.1  Dietary phytochemicals for prevention and treatment of NCDs

Chronic 
disease

Natural 
compound Activity Refs.

Diabetes Anthocyanin Improved glucose metabolism and insulin sensitivity [29]

Stigmasterol Improved hyperglycemia [30]

Genistein 
diglucuronide

Lower T2DM risk [31, 
32]

Dihydrocaf-
feic acid

Lower T2DM risk; lower concentrations of plasma glucose

P-Coumaric, 
ferulic, caffeic 
acids and 
quercetin

α-Amylase and α-glucosidase inhibitory activities [33]

Resveratrol Substantial decrease in homeostatic model assessment of insulin 
resistance (HOMA-IR) and insulin levels

[34]

It improves glucose and insulin metabolism [35]

Catechin, 
gallic, 
protocatechuic 
acids, and 
quercetin

α-Amylase and α-glucosidase inhibitory activities [36]

Gallic, 
p-coumaric 
acid, and 
Tyrosol

[37]

Isoflavones 
and lignans

Improved glucose uptake in animal studies, but inconsistent results in 
humans

[38]

Quercetin Exerted effects on insulin release via changes in Ca2+ metabolism [39]

Reduced intestinal absorption of glucose, improves glucose absorption 
in tissues and organs; and improves insulin resistance

[40]

Improved the function of pancreatic β cells through adenosine 
monophosphate-activated protein kinase (AMPK), among other 
mechanisms

[41]

Vitexin, 
isovitexin and 
isorhamnetin 
rutinoside

α-Glucosidase inhibitory effects [42]

γ-Sitosterol Increased insulin secretion in response to glucose [43]

Naringenin Reduced glucose adsorption by the intestinal brush border, reduced renal 
glucose reabsorption, and increased glucose uptake and utilization

[43, 
44]

Rutin Improves glycemic status [45]

Curcumin Improved β-cell functions, prevents β-cell death, and decreases insulin 
resistance

[46]

(continued)
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Table 4.1  (continued)

Chronic 
disease

Natural 
compound Activity Refs.

Cardio-
vascular 
disease

Ellagitannin Inhibited proliferation of myocardial fibrosis [47]

Curcumin Decreased oxidative stress and fibrosis [48]

Promoted mitochondria function; Prevents apoptosis [49]

Icariin Inhibits of myocardial apoptosis and prevention of inflammation on 
endothelial cell injury

[50]

Ferulic acid Vasorelaxation [51]

Resveratrol Activated SIRT-1 (a class III histone deacetylase), eNOS, Nrf2, and 
antioxidant response element (ARE), and decreases TNFα production

[52]

(+)-Catechin Reduced NF-κB activation; reduction of ICAM-1 and E-selectin 
adhesion molecules

[53]

(−)-Epicat-
echin

Procyanidin 
dimer B2

Quercitin Antihypertensive, hypolipidemic, hypoglycemic, anti-atherosclerotic, 
and cardioprotective

[54]

Procyanidin 
trimer C1

Promoted Ca2+-mediated signals such as the hyperpolarization via 
multiple K+ channel activations and the Nitric Oxide release in rat aortic 
endothelial cells

[55]

Cinnamtannin 
A2

Protected low-density lipoprotein from oxidation [56]

Cancer Glucosinolate Promotes apoptosis and inhibits proliferation of human liver cancer cells [57]

Induced senescence and apoptosis of human breast cancer cells; 
stimulated tumor suppressors; Inhibited tumor growth

[58]

Stimulated tumor suppressors [59]

Reduced melanoma cell viability [60]

Enhanced gap junction activity and chemotherapy sensitivity; improved 
dendritic cell activity; activated tumor suppressor gene

[61]

Inhibits tumor progression [62]

Baicalin Inhibits proliferation of cancer cells [63]

Inhibited tumor growth and progression [64]

Daidzein Inhibited tumor growth [65]

Promoted tumor growth

Epigallocate-
chin-3-gallate

Eliminated toxic compounds and inhibits growth of cancer cells [66]

Emodina Suppresseed the growth of various tumor cell lines [67]

Ellagic Acid Anti-proliferative and apoptotic effects [68]

6-Shogaol Akt and STAT signaling [37]

Allicin Suppressed cell proliferation and invasion via STAT3 signaling and may 
be a potential therapeutic agent

[69]

Alpinumiso-
flavone

Suppressed tumor growth and metastasis of clear-cell renal cell 
carcinoma

[70, 
71]

Androgra-
pholide

Suppressed cell proliferation and inducing cell apoptosis via inactivation 
of ER-α receptor and PI3K/AKT/mTOR signaling

[72]

Apigenin Cell growth arrest and apoptosis [73]

Curcumin Modulated cell signaling and gene expression regulatory pathways [74]

(continued)
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Chronic 
disease

Natural 
compound Activity Refs.

Dicumarol Inhibited PDK1 and targets multiple malignant behaviors of ovarian 
cancer cells

[75]

Genistein Inhibited AKT phosphorylation and suppression of GSK-3β 
dephosphorylation. Promotes β-catenin phosphorylation

[76]

Gingerol Induced apoptosis in the bladder cancer cell [77]

Glycyrrhizin JAK/STAT signaling pathway [78]

Hispidulin Intrinsic apoptosis pathway [79]

Licochalcone 
A

Induced cell cycle arrest in human lung squamous carcinoma cells via 
the PI3K/Akt signaling pathway

[80]

Nimbolide PI3K/AKT/mTOR and ERK signaling [81]

Physapubescin 
B

Ki-67, Cdc25C, and PARP [82]

Pterostilbene Anti-tumor activity in ovarian cancer via anti-proliferative and 
pro-apoptotic mechanisms, possibly via downregulation of JAK/STAT3 
pathway

[83]

Resveratrol Regulated cell cycle and apoptosis pathways [84]

Sulforaphane Cell cycle arrest and apoptosis. Targets: caspase 8, p21, hsp90 [85]

Thymol Mitochondrial mediated apoptosis [86]

Thymoqui-
none

Induced the apoptosis of A431 cells through generation of ROS and 
inhibition of STAT3 signaling

[87]

Ursolic acid Inhibited the growth of human pancreatic tumors and sensitized them to 
gemcitabine by suppressing inflammatory biomarkers linked to 
proliferation, invasion, angiogenesis, and metastasis

[88]

Withaferin-A Modulated the expression and activity of different oncogenic proteins [89]

Ellagitannin Reinforced gut barrier function [90]

Inflam-
matory 
disease

Curcumin Reduced inflammation and oxidative stress [91]

Baicalin Inhibited pyroptosis and inflammation [92]

Table 4.1  (continued)

interplay between phytochemicals and health highlights the promising potential of 
plant-based treatments to reduce the global burden of NCDs. This chapter aims to 
provide a comprehensive understanding of the role of phytochemicals in some 
chronic diseases and their prevention.

4.2 � Phytochemicals, Microbiota-derived Metabolites, 
and Their Influence on NCDs

The human gut microbiome is a fascinating microbial universe living in the diges-
tive system [105, 106]. In newborns, a complex community of bacteria, archaea, 
and eukaryotes develops based on the method of birth, whether the newborn is 
breastfed, and the exposure to environmental microbes. The microbiota plays a 
critical role in human health (Fig.  4.1) [107, 102], influencing everything from 
immune function to metabolism [108–110]. Most of the body’s microbiota resides 
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Fig. 4.1  Schematic representation of the crosstalk between the human microbiome and noncom-
municable diseases. Microbiota plays a critical role in the development and progression of obesity, 
diabetes, immune function, heart disease, cancer, and neurological disorders

in the colon [111] and constantly influences the host’s health by digestion and 
absorption of nutrients [112, 113]; production of energy [113], hormones [114], 
neurotransmitters [115], and vitamins [116]; modulation of the immune system 
[117]; and protection against pathogens and exogenous toxins [118]. Multiple fac-
tors play a crucial role in shaping the gut microbiota [119], and later in life, medica-
tions, diseases, genetics, and lifestyle preferences can alter the microbiota 
composition [120–123], being the diet the most influential factor in the gut micro-
biota and human health [124]. Phytochemicals can selectively enhance the growth 
of microbes [125], and the fermentation of non-digestible polyphenols by gut 
microbes generates beneficial polyphenolic compounds providing significant pro-
tection against many chronic diseases [111, 126–130]. Phytochemical beneficial 
effects likely involve microbiota, either by altering microbial metabolites or by 
interacting with host cells. For instance, ellagic acid, a polyphenol found naturally 
in many plants, is metabolized by colonic bacteria into urolithins, a class of antican-
cer agents (Fig. 4.2) [47, 111, 130–136].

G. N. Guerrero-Flores et al.
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4.2.1 � Phytochemicals and Heart Diseases

Cardiovascular diseases (CVDs) remain the leading cause of death and disability in 
the USA and globally [137]. The principal risk factors for CVD involved are high 
blood cholesterol, higher body mass index (BMI), high blood pressure, glucometa-
bolic disorders, and diabetes [138, 139]. Studies indicated that compared to omniv-
orous diets, vegetarian diets based on plant food groups such as fruits, whole grains, 
legumes, vegetables, nuts, and seeds are associated with considerable reductions in 
several modifiable risk factors; in contrast, incorporating animal products in the diet 
is positively associated with the risk to develop CVDs [11, 140–142].

Cohort studies, systematic reviews, and meta-analyses have shown that vegan 
and vegetarian diets improve various cardiometabolic risk markers, including blood 
lipids and body weight [11, 21, 138, 141, 143, 144], and compared with non-
vegetarians, vegetarians have a lower risk of CVD and IHD mortality, respectively 
[144]. Moreover, blood pressure levels in those with a plant-based diet were also 
lower than meat eaters, and a reduced prevalence of metabolic syndrome and type 2 
diabetes mellitus (T2DM)—prime risk conditions for CVD and stroke—was 
observed in vegan and vegetarian participants of the Adventist Health Study-2 
(AHS-2) [8, 9]. These differences in the AHS-2 occurred although the non-vegetar-
ians in this cohort eat less meat than the general population [11, 12]. Interestingly, 
clinical intervention studies utilizing plant-based eating patterns have additionally 
demonstrated the reversal of coronary artery disease in cardiovascular disease 
patients [11, 12, 145].

Plants contain many protective nutrients and phytochemicals such as flavonoids, 
polyphenols, sterols, sulfur compounds, and terpenoids [146–148]. Studies indicate 
that these compounds provide cardiovascular benefits: flavonoids prevent low-
density lipoprotein oxidation and improve vasodilation; plant sterols reduce choles-
terol absorption; sulfur compounds activate antioxidant pathways; quinones boost 
mitochondrial ATP production; and terpenoids decrease atherosclerotic lesions on 
the aortic valve [149–153]. By providing these cardioprotective effects, the phyto-
chemicals abundant in plants may explain the more favorable cardiometabolic risk 
profile observed in vegetarians compared to non-vegetarians.

Gut Microbiota, Phytochemicals, and Cardiovascular Diseases  In recent years, 
studies evaluated how gut microbiota can directly modulate coronary artery diseases 
[154]. Research has shown that certain polyphenol-rich compounds can beneficially 
modulate the gut microbiota and reduce risk factors for cardiovascular disease. For 
example, correlation analysis has revealed a significant association between gut 
microorganisms such as Roseburia, bioactive phenolic metabolites -from Aronia 
melanocarpa- in plasma, and improved vascular function [155, 156]. Resveratrol 
increases Prevotella, Akkermansia, Lactobacillus, and Bifidobacterium bacteria, 
which correlates with reduced microbial production of trimethylamine-N-oxide 
(TMAO), an atherosclerosis risk factor [157]. Hesperidin increases Lactobacillus 
bacteria in the body and improves cardiovascular health by improving endothelial 
function, which enhances blood flow [158]. Furthermore, peanut skin extract, rich 
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in procyanidins, catechin, and epicatechin, increases Roseburia, Akkermansia, and 
Bifidobacterium abundance and reduces atherosclerotic plaques [159]. Moreover, 
the administration of curcumin promoted weight loss in mice with obesity and 
hepatic steatosis induced by a high-fat diet, an effect associated with the growth of 
short-chain fatty acid-producing bacterial species, including Bacteroides, 
Akkermansia, Parabacteroides, Alistipes, and Alloprevotella [160]. Additionally, 
the proanthocyanidin found in wild blueberries reduces obesity by promoting the 
growth of the gut bacteria Akkermansia muciniphila and goblet cells [161]. On the 
other hand, studies that autotransplant fecal microbiota combined with a 
Mediterranean diet rich in polyphenols have been shown to increase the prolifera-
tion of beneficial bacteria, such as Bacteroides massiliensis and Paraprevotella 
clara, which attenuate weight gain, and maintain glycemic control [162].

4.2.2 � Cancer and Phytochemicals

Cancer is one of the leading causes of death worldwide [163–165]. Estimates sug-
gest that around 40% of cancer cases could be preventable by modifying risk factors 
[166] such as reducing tobacco use, increasing physical activity, controlling weight, 
restraining alcohol, and improving diet [167, 168]. Diet-related factors alone are 
thought to account for about 30% of cancers in developed countries [169]. Evidence 
from two large cohort studies of vegetarian populations—AHS-2 and the European 
Prospective Investigation into Cancer and Nutrition-Oxford (EPIC-Oxford)—sug-
gests that increased consumption of nuts, fruits, legumes, and vegetables is associ-
ated with decreased overall cancer risk and cancer mortality [13, 170, 171]. 
Consumption of red meat has been associated with higher mortality from cancer 
overall, non-Hodgkin lymphoma, and cancers of the bladder, breast, colon, endo-
metrium, esophagus, stomach, lung, and nasopharynx. Additionally, eating pro-
cessed meats may increase the risk of death from cancer in general, non-Hodgkin 
lymphoma, and cancers of the bladder, breast, colon, esophagus, stomach, naso-
pharynx, oral cavity, oropharynx, and prostate [171–173].

Phytochemicals from fruits, vegetables, and other plant sources have promising 
anticancer effects [174, 175]. Some phytochemicals act as chemopreventive agents 
that inhibit tumor formation [176], while others have potential cancer treatments [177, 
178]. These phytochemicals target molecular pathways involved in cancer growth and 
progression through mechanisms like carcinogen deactivation, antioxidant effects, 
halting proliferation, inducing apoptosis, and immune system modulation [177]. 
Ellagic acid, for example, a polyphenol present in walnuts, berries, pomegranates, and 
grapes [179], demonstrates antiproliferative effects against certain cancers [68, 132]. 
Resveratrol, found in grapes, berries, and peanuts, exhibits activity against breast, 
cervical, uterine, blood, kidney, liver, eye, bladder, thyroid, esophageal, prostate, 
brain, lung, skin, gastric, colon, head and neck, bone, ovarian, and cervical cancers 
[180]. Allicin, a compound derived from garlic, also shows promising benefits [181].

4  Phytochemicals for Preventing and Treating Chronic Diseases



62

Gut Microbiota, Phytochemicals, and Cancer  A healthy gut microbiome can pro-
tect against cancers, though the mechanism remains unclear. For example, curcumin 
has demonstrated anticancer properties that are facilitated by the gut microbiome 
[182]. A 6-month observational study revealed that a combination of curcumin and 
quercetin reduced the number and size of polyps by over 50% in patients with an 
inherited form of colorectal cancer [183], however, bacteria were not a factor evalu-
ated in this particular study. Additionally, green tea polyphenols substantially 
delayed the development of estrogen receptor-negative mammary tumors and 
increased populations of Adlercreutzia and Lactobacillus in a transgenic mice 
model [184]. Furthermore, administering a polyphenol from Myrciaria dubia 
(Camu camu) increased Ruminococcaceae growth and CD8+ T cells in the tumor 
microenvironment [185], consequently regulating the effectiveness of therapy 
against cancers [186].

4.2.3 � Phytochemicals and Type 2 Diabetes Mellitus

The global prevalence of diabetes mellitus, especially T2DM, is rising sharply, as 
reported in the 2019 and 2021 editions of the Diabetes Atlas [187]. According to 
statistics, diabetes affected an estimated 537 million people between the ages of 20 
and 79 years worldwide in 2021. Experts project this number will rise to 783 million 
cases globally by the year 2045 [188]. Type 2 diabetes mellitus can lead to numer-
ous health complications like kidney disease, nerve damage, and vision loss, mak-
ing it a leading cause of various chronic metabolic conditions [189]. The current 
treatment for T2DM relies on drugs that improve insulin sensitivity, supplement 
insulin levels, stimulate insulin secretion, or enhance glucose absorption [190]. For 
example, Metformin is one of the most used drugs for treating T2DM, but it can 
cause side effects ranging from mild to severe, which may lead patients to stop tak-
ing their medication as prescribed [191]. However, alongside pharmacological 
interventions, dietary plans focusing on balanced nutrition and portion control usu-
ally are also part of the treatment.

Combined therapies with medications that have different mechanisms of action 
can provide greater therapeutic control. These often include a glucagon-like peptide 
1 receptor agonist and a sodium-glucose cotransporter 2 inhibitor [192]; neverthe-
less, therapies using multiple drugs may appear effective, but they can cause prob-
lems like toxicity, and side effects due to the complex pharmacological interactions 
[193]. Conversely, research indicates that people with T2DM benefit from phyto-
chemicals due to their effectiveness, affordability, and probable low side effects 
[194, 195]. Studies have identified around 1200 plants rich in bioactive compounds 
with antidiabetic properties, with 400 specifically targeting T2DM [196–198]. 
Consequently, managing T2DM with phytochemicals appears to be a highly prom-
ising and appealing approach.

The Mediterranean and a plant-based diet consisting of whole grains, legumes, 
vegetables, and fruits contain compounds such as phenolics, carotenoids, and 
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vitamins that may improve glycemic control and protect against T2DM and its com-
plications [199–202]. Animal research shows that plant extracts containing high lev-
els of phytochemicals exhibit antidiabetic effects equal to or better than some standard 
antidiabetic medications [203–206]. Several phytochemicals from plant food also 
have antihyperglycemic properties and disease-modifying effects [178, 195, 196, 
203, 204]. Other phytochemicals including flavonoids, saponins, pectin, glucosides, 
and myrcelin have also demonstrated antidiabetic potential in studies [194].

The mechanisms by which phytochemicals produce their antidiabetic effect 
include (a) increasing insulin secretion, (b) improving insulin sensitivity, and (c) 
mimicking insulin action [207, 208]. For example, an 8-week study in humans 
found an extract of flavonoids, flavonol aglycones, phenolic acids, and steroid gly-
cosides from the Balanites aegyptiaca fruit (desert date) significantly reduced post-
prandial plasma glucose, suggesting it improved insulin sensitivity by lowering fat 
levels [209]. Additionally, the consumption of 2 g of chocolate with 70% cocoa 
content was associated with improved fasting plasma glucose and insulin resistance 
parameters compared to milk chocolate, likely because it contains more flavonoids 
[210]. Resveratrol and quercetin, two phytochemicals extensively studied for their 
potential to prevent and treat diabetes, have demonstrated promising results. 
Resveratrol improves glucose metabolism and lipid profiles in patients with T2DM 
taking oral medication or insulin, according to multiple studies [34, 35, 211, 212]. 
Quercetin enhances glucose metabolism and pancreatic beta-cell function to lower 
plasma glucose levels [40, 213, 214].

The fight against diabetes is intensifying, indicating a need to break with some 
traditional medicine paradigms and combine conventional treatments with plant-based 
products. In coming years, prevention and treatment of this disease may shift toward a 
more holistic approach, as no plant compound nutraceutical or food derivative cur-
rently substitutes directly for antidiabetic drugs. A strategy prioritizing a diet high in 
plant-based foods will yield better outcomes than conventional medications alone.

Gut Microbiota, Phytochemicals, and T2DM  Altered glucose homeostasis corre-
late with changes in gut microbiota composition and the progression of T2DM and 
its complications [215]. Both animal models and human studies show certain micro-
biota impact glucose metabolism in T2DM [216]. For example, higher ratios of 
Bacteroidetes to Firmicutes and Bacteroides-Prevotella to Clostridium coccoides-
Eubacterium rectale positively correlate with plasma glucose, linking intestinal 
microbiota to T2DM [217]. Additionally, T2DM patients tend to have lower levels 
of beneficial Bacteroides, Prevotella, and Bifidobacterium genera. Bifidobacterium 
provides health benefits including improved gut permeability, reduced endotoxin, 
and inflammation, along with enhanced glucose tolerance, insulin secretion, and 
attenuated inflammation. Genera like Bifidobacterium, Bacteroides, 
Faecalibacterium, Akkermansia, and Roseburia associate negatively with T2DM, 
while Ruminococcus, Fusobacterium, and Blautia correlate positively.

Furthermore, obesity and T2DM are linked to depleted butyrate-producing bac-
teria in the Clostridiales order [218, 219]. Butyrate is a key compound that supports 
proper pancreatic beta cell function, especially post-meal. Overall, adequate 
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butyrate is associated with improved insulin response, while abnormal propionate is 
associated with T2DM risk, both inducing inflammation [215, 220]. The character-
ization of gut microbiota dysbiosis in various diseases and the establishment of a 
causal relationship between gut microbiota and disease can be valuable in develop-
ing therapeutic interventions for T2DM and its associated complications [221].

4.2.4 � Gut Microbiota and Neurological Diseases

A healthy gut with diverse microbes is vital for normal brain functions and emo-
tional behaviors [222]. There is a well-established relationship between gut micro-
biota and various neurological diseases, including anxiety, Alzheimer’s disease, and 
depression [223–228]. The diversity of gut microbes is vital for normal brain func-
tions and emotional behaviors. For example, curcumin reversed anxiety-related 
behaviors in an anxious mouse model by upregulating Muribaculaceae, which 
counteracted the harmful effects of dextran sulfate sodium salt [227]. In another 
murine Alzheimer’s model, quercetin significantly reduced attention deficit symp-
toms and parameters; this improvement correlated with an increased abundance of 
Barnesiella, Lactobacillus, and Parasutterella genera [226]. Additionally, higher 
blood carotenoid levels in humans were associated with a lower risk of developing 
depressive symptoms [228].

Studies of the gut–brain axis in the future will need to address research questions 
regarding the gut microbiota and associated neurological disorders in order to pro-
vide valuable insights into the beneficial or pathological role of the gut microbiota 
on the brain.

4.3 � Conclusion

Chronic noncommunicable diseases are a major global health threat, causing most 
deaths in low and middle-income countries. High intake of animal-derived food has 
been linked to increased mortality, while diets rich in fruits, vegetables, nuts, and 
whole grains protect against NCDs. Phytochemicals, bioactive compounds from 
plants, and their interaction with the microbiota have potential health benefits. 
Combining conventional treatments with plant-based products may be necessary to 
fight NCDs.
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